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ABSTRACT

With the popularization of blockchain technology, cryp-
tocurrencies like Bitcoin are widely used in digital trans-
actions. Due to Bitcoin’s anonymity and decentralized
nature, it is often exploited for illegal activities, disrupting
normal economic and social operations. Detecting illegal
Bitcoin transactions has become a critical research focus.
Traditional methods such as integrated learning, address
clustering, and LSTM neural networks face challenges
with category imbalance and high feature dimensionality
in transaction data, leading to low recognition rates and
high false alarm rates. To address these issues, this pa-
per proposes a hybrid model combining GraphSAGE and
GAT, leveraging the graph structure of Bitcoin transac-
tion networks. By integrating GAT’s attention mechanism
into GraphSAGE, the model effectively captures network
relationships and transaction features. Experimental re-
sults demonstrate that the proposed model outperforms
traditional approaches in detecting illegal Bitcoin trans-
actions.

Index Terms— graph neural network, bitcoin illicit trans-
action detection, deep learning

1. INTRODUCTION

Bitcoin transaction detection is a technique to identify illegal
activities by analyzing transaction behavior in the Bitcoin net-
work. In general, the anonymous and de-neutralized nature
of Bitcoin makes its transaction data high-dimensional, dy-
namic, and category-imbalanced, making it difficult for peo-
ple to analyze whether a single Bitcoin transaction is legiti-
mate. [1]

Therefore the use of appropriate and reasonable technol-
ogy will certainly help the government to combat illegal activ-
ities such as money laundering and terrorist financing. [2]In
recent years, with the rapid development of artificial in-
telligence, Bitcoin transaction detection methods based on
machine learning and deep learning have been widely used.
Traditional machine learning algorithms, such as integrated
learning, SVM, and logistic regression, usually rely on manu-
ally extracted features to categorize transaction data, and thus

have a high dependence on feature selection and exhibit lim-
itations for complex transaction networks. Among the deep
learning algorithms, Long Short-Term Memory (LSTM) net-
works are able to capture the time-series characteristics of
Bitcoin transactions, and Convolutional Neural Networks
(CNNs) are able to perform automated feature extraction on
high-dimensional data. [3]However, none of these methods
can fully utilize the graph structure information in the Bitcoin
transaction network. [4] In contrast, graph neural networks
(GNNs) have unique advantages in processing complex graph
data by modeling the graph structure of the transaction net-
work and capturing the node relationship information, so the
bitcoin transaction detection model based on graph convo-
lutional networks (GCNs) has become a hot research topic
nowadays. [5]

Bitcoin transaction detection is formulated as a pattern
recognition problem, which involves two main processes:
feature extraction and data classification for identification,
and consists of the following modules: transaction data input,
data preprocessing, feature extraction and selection, classifi-
cation, and finally transaction illegitimacy identification.

The main contribution of this paper can be summarized as
follows:

• A hybrid graph neural network model is proposed:
This paper introduces the attention mechanism of GAT
(Graph Attention Network) on top of the traditional
graph neural network GraphSAGE, which is good at
extracting node features by aggregating the feature in-
formation of neighboring nodes, while the attention
mechanism of GAT is able to dynamically assign the
weights of neighboring nodes to capture the importance
of different transaction nodes in the Bitcoin transaction
network more efficiently. GAT’s attention mechanism
can dynamically assign the weights of neighbor nodes
to capture the importance of different transaction nodes
in the Bitcoin transaction network more effectively.
Combining the advantages of both, this paper proposes
a hybrid graph neural network model.

• Solution to the data imbalance problem: Aiming at the
problem of category imbalance in bitcoin transaction
data, this paper introduces a weight balancing strategy



Fig. 1. Bitcoin Trading Process

during model training to reduce the impact of the im-
balance of the proportion of positive and negative sam-
ples on the detection effect. In addition, the node fea-
tures of the transaction network are optimized by com-
bining the feature enhancement method to improve the
sensitivity of the model to abnormal samples.

• Experimentation and evaluation: In this paper, the pro-
posed model is validated through several experimen-
tal settings using publicly available Bitcoin transaction
datasets. The experimental results show that compared
with the traditional methods, the model in this paper
shows significant improvement in metrics such as ac-
curacy, F1-score, and recall, especially in the identi-
fication of illegal transaction samples, which exhibits
lower false positives and misses.

This paper is organized as follows: Section 2 presents
background information and previous work on bitcoin trans-
action detection. Section 3 details the design and implemen-
tation of the hybrid graph neural network model proposed
in this paper, including data preprocessing, fusion of Graph-
SAGE layer and GAT layer, and construction of the classifi-
cation module. The fourth section demonstrates the experi-
mental design and result analysis, verifying the performance
of this paper’s model through multiple sets of experimental
comparisons and comprehensively comparing it with existing
methods. Finally, section 5 summarizes the conclusions of
this paper.

2. RELATED WORK

In this section, we give some theoretical knowledge and back-
ground information on bitcoin transaction detection.

2.1. Graph Theory

Graph theory is a branch of mathematics that focuses on the
study of graphs as structures and their properties. Graphs are
mathematical objects with nodes and edges that are used to
describe relationships and links between objects.

A graph G = (V,E) is a set composed of the following
two subsets:

• V : A set of nodes, representing individual entities in
the graph.

• E: A set of edges, representing the connections be-
tween nodes.

Graph theory is a discipline that analyzes the structure and
dynamic behavior of graphs through core concepts such as
paths, connectivity, and degree.

2.2. Bitcoin Trading Process

The Figure1 above is a sketch of the flow of a Bitcoin trans-
action, revealing the public key encryption and digital signa-
tures to achieve security and transfer of ownership during a
Bitcoin transaction. The construction and signing of a Bit-
coin transaction is done by the client based on the function
of the transaction (e.g., transferring money or invoking a con-
tract), including information about the sender, receiver, and
transfer amount. As it relates to the security of personal as-
sets, the blockchain system requires transaction integrity and
data security. The transaction is signed through the wallet
using a private key and sent to the node’s transaction pool.
The transaction pool verifies the correctness and legitimacy
of the transaction; illegitimate transactions are eliminated and
legitimate transactions are retained in the pool, waiting to
be processed by the consensus module. When the consen-
sus module reaches an agreement, the transactions to be pro-
cessed are selected from the transaction pool and packaged
into blocks, and handed over to the execution module to com-
plete the logic submitted by the user. After the execution is
completed, the transaction results and block information are
recorded to the storage module and finally permanently saved
on the blockchain, i.e., a transaction is completed.

Through the above theoretical analysis, it is not difficult
to find that each transaction can be modeled as a node in the
graph, and each transaction involves a sender and a receiver,
and is connected to the blockchain through transaction pools



and blocks, so the Bitcoin transaction process presents a nat-
ural graph structure.

2.3. GNN

Graph Neural Network (GNN) is an extension of deep learn-
ing for processing graph-structured data as a neural network
model that effectively captures structural information about
nodes and edges in a graph as well as their characteristics.
The core idea of GNN neural networks is to learn the rep-
resentation of the nodes in the graph and the global graph
structure through a message passing mechanism whereby
each node receives information from its neighboring nodes
and updates its own state. [6]

2.4. Description of The Dataset

Due to the limited amount of Bitcoin data, this paper uses a
dataset from Elliptic, a company that focuses on blockchain
technology and cryptocurrency analysis. The Elliptic dataset
is a publicly available dataset focused on blockchain trans-
action analysis. The dataset consists of 49 blocks of Bitcoin
transactions in the form of a directed graph representing the
transaction network, where nodes represent transactions and
edges represent the flow of money between transactions. The
dataset contains 203,769 transaction nodes, of which 54% are
legal transactions (illicit), 2% are illegal transactions (illegal),
and the remaining 44% are unlabeled. Each transaction node
has 166 features including local features, neighborhood fea-
tures and temporal features.

3. METHODS

3.1. Data Analysis

3.1.1. Exploratory Data Analysis

In order to gain a deeper understanding of the Elliptic dataset
characteristics and accurately grasp the nature of the data
points, this paper conducts an exploratory analysis (EDA),
which employs visualization and statistical analysis methods
to comprehensively explore the data structure, distribution,
and characteristics to perceive the importance of the nodes in
the bitcoin transaction network as well as the difference in
the structure and distribution of the data of the legitimate and
illegitimate transaction nodes.

3.1.2. Exploration of Node Importance Assessment

Measuring the importance of nodes is extremely important in
graph studies. In this paper, three centrality metrics, namely
closeness centrality, degree centrality and mediated centrality,
are used to assess the importance of nodes.

• Closeness Centrality

Closeness centrality measures the average short-
est path distance from a node to all other nodes in the
network. In other words, it reflects the efficiency with
which information spreads from one node to all the oth-
ers.

C(v) =
1∑

u̸=v d(u, v)

where d(u, v): The shortest path distance between
nodes u and v.

Nodes with high closeness centrality are located
at the center of the network and can efficiently access
other nodes. These nodes typically have a low average
distance to other nodes, enabling them to interact more
effectively. A node with high closeness centrality is
beneficial for communication networks, as it reduces
the time or cost of information flow.

In order to better evaluate the network topol-
ogy, this paper first selects the ten nodes with the
highest proximity centrality and draws the local sub-
graph structure between the ten nodes, as shown in the
figure2.

Fig. 2. Top 10 Closeness Centrality Nodes

Where the pink nodes in the graph indicate the
highest proximity centrality, while the blue to cyan
nodes are decreasing in order, the graph explains the
distribution structure of high proximity centrality nodes
in the network.

• Degree Centrality

Degree centrality measures the number of direct
connections (i.e., neighbors) of a node in a network.
The formula is:

C(v) =
deg(v)
n− 1

where deg(v) is the degree of node v (i.e., the
number of edges connected to v), n is the total number
of nodes in the network.

Nodes with high degree centrality indicate that the
node is directly connected to many other nodes in the



network. They are likely to be the most active or impor-
tant nodes in the network, participating in the most in-
teractions. Nodes with high degree centrality may rep-
resent participants in a large number of transactions,
such as key traders or major addresses in cryptocur-
rency networks.

• Mediated Centrality

Mediated centrality measures a node’s ability to
act as a ”bridge” or ”intermediary” in the network, indi-
cating how frequently the node appears on the shortest
paths in the network. The formula is:

C(v) =
∑

s̸=v ̸=t

σst(v)

σst

where σstis the total number of shortest paths
between nodes s and t, σst(v)is the number of those
shortest paths that pass through node v.

Nodes with high mediated centrality indicate
nodes that serve as bridges or intermediaries in the
network, connecting different communities or subnet-
works. These nodes may represent critical hubs or
key intermediaries in the network; their removal could
greatly affect network connectivity. Nodes with high
mediated centrality may play critical roles in financial
networks, as they appear on multiple transaction paths
and could be key participants or addresses.

The final graph structure(Figure3 is plotted below, where
different colored labels represent transaction nodes of differ-
ent levels of importance.

Fig. 3. The distribution of nodes under different centrality

3.1.3. Characterization of Illegal and Legal Data

Illegal and legal data have different data characteristics, so
this paper analyzes the structural characteristics and distribu-
tion differences between the two types of transaction nodes,

illegal and legal, and the results obtained are shown in the
figure4.

Fig. 4. Characteristics of Illegal and Legal Data

According to the analysis of the above figure, it can be
seen that the node distribution of illegal transactions is sparse,
with fewer network connections, usually showing a decentral-
ized or isolated small-group structure, reflecting its covert and
low-interaction characteristics, while the node distribution of
legal transactions is more dense, with active network connec-
tions, and there is an obvious aggregation phenomenon in the
central area, forming the core group of high-frequency trans-
actions. This difference suggests that illicit transactions tend
to reduce the likelihood of being tracked, while legitimate
transactions typically engage in more complex and extensive
network interactions.

3.2. Construction of Graph Neural Hybrid Network
Models for GraphSAGE and GAT

3.2.1. Algorithm Modeling

According to the above analysis, because of the complex
topology and feature extraction requirements in the Bitcoin
transaction network, it is often difficult for the single graph
neural networks previously studied to meet the relevant re-
quirements. In this paper, we choose the graph neural hybrid
network model that combines GraphSAGE and GAT. The
neural network, which is shown in the figure5 is constructed
according to the following steps.

• Data loading and pre-processing

Based on the dataset characteristics, the data is ex-
tracted and categorized into feature data, category la-
bels and transactional relationship data:

– feature data X ∈ Rn×d

where n is the number of transaction nodes, d is
the dimensionality of the feature vector for each
transaction node, X[i, :] represents the feature
vector of the i-th transaction node.

– category labels Y ∈ {0, 1}n
where Y [i] = 0 indicates that node i is a legal
transaction (class = 1), Y [i] = 1 indicates that
node i is an illegal transaction (class = 2).



Fig. 5. GraphSAGE and GAT mixed graph neural network structure diagram

– transactional relationship data E ∈ R2×m

where, m is the number of transaction relation-
ships (edges), E[0, j] and E[1, j] represent the
starting node and the target node of the j-th edge,
respectively.

The diagram construction process is as follows:

(1)Selecting Legal and Illegal Transaction Nodes

By selecting transaction nodes with legal classifi-
cation (class=1) and illegal classification (class=2), the
set of nodes is generated as:

V = {vi | Y [i] ∈ {0, 1}, i = 1, 2, . . . , n}

(2)Constructing Node Index Mapping

Transaction identifiers (txId) are mapped to con-
tinuous node indices:

Map(txIdi) → i, i ∈ {1, 2, . . . , n}

(3)Constructing Edge Index Matrix

For the source and target nodes (txId1 and txId2)
in transaction relationships, the mapping is:

E =

[
Map(txId1j)
Map(txId2j)

]
, j = 1, 2, . . . ,m

The edge index matrix E represents the connec-
tions between nodes in the graph.

• Residual Map Neural Network Layers

The residual graph neural network combines the fea-
tures of GraphSAGE and Graph Attention Network
(GAT) while using jump connections, which in turn

builds a neural network model structure divided into
input, hidden and output layers.

(1)Input Layer

Input:

– Node feature matrix X ∈ Rn×d: The initial fea-
tures of each node.

– Edge index matrix E ∈ R2×m: Represents the
relationships between nodes.

(2)Hidden Layer

1) The first layer

In this paper, data feature extraction uses Graph-
SAGE as a graph convolution operator to aggregate
information from node domains, convert raw node fea-
tures into high-level feature structures, and perform
feature analysis in the following steps:

Assume the node feature matrix is X , the edge set
is E, and each node’s initial feature dimension is d. The
output feature dimension of the first hidden layer is h.

– Neighborhood Sampling
For a node v, GraphSAGE randomly sam-

ples a subset of neighboring nodes N (v), instead
of using all neighbors, to reduce computational
complexity.

– Feature Aggregation
Using an aggregation function (e.g., mean,

pooling, or LSTM), the features of v’s neighbors
Xu are aggregated:

hN (v) = Aggregate({Xu | u ∈ N (v)})

– Feature Update



The aggregated feature hN (v) and the node’s
own feature Xv are combined and transformed
using a linear transformation and an activation
function:

h(1)
v = σ

(
W · Concat(Xv, hN (v))

)
2) The second layer

According to the incoming feature information
from the first layer of GraphSAGE neural network,
in order to dynamically allocate each node to assign
different weights to its neighboring nodes, a graph
attention network is used to introduce the attention
mechanism for node weight allocation, and then to
model the node importance at a fine-grained level, and
the specific working mechanism is as follows:

– Calculation of Attention Coefficients
For a node v, GAT calculates the attention

coefficient αvu for its neighbor node u:

αvu =
exp(evu)∑

k∈N (v) exp(evk)

where:

evu = LeakyReLU
(
a⊤[Whv∥Whu]

)
- evu: Attention score between node v and its
neighbor u.
- W : Linear transformation weight matrix.
- hv,hu: Input features of nodes v and u, respec-
tively.
- ∥: Concatenation operation.
- a: Learnable attention weight vector in the at-
tention mechanism.

– Aggregation of Neighbor Features
After computing the attention coefficients,

GAT aggregates the features of neighboring
nodes:

h′
v = σ

 ∑
u∈N (v)

αvuWhu


where:
- h′

v: Updated feature of node v.
- σ: Non-linear activation function (e.g., ReLU).

– Multi-Head Attention Mechanism
To improve the robustness of the model,

GAT typically uses a multi-head attention mecha-
nism, combining the outputs of multiple attention
heads:

h′
v =

∥∥K
k=1

σ

 ∑
u∈N (v)

αk
vuW

khu



3)Jump connection

In the process of deep network, it is easy to ap-
pear gradient disappearance and over-smoothing prob-
lem, this paper adopts the way of jump connection to
connect the first layer of inputs and raw data to the sub-
sequent layer, the specific formula is shown as follows:

The transformation through a linear layer is defined as
follows:

Zlinear = WlinearCconv + blinear

where:

– Wlinear: Weight matrix.

– blinear: Bias term.

The output of the linear layer is processed through
addition and the softmax operation, combining the in-
put features and the transformed features to produce the
final classification or regression result. This step incor-
porates the weight of the original input features to en-
sure that the final output reflects the importance of the
input features.

The importance of the input features is reflected as
follows:

ŷ = argmax (softmax(Zlinear +WinputX, dim = 1))

where:

– Winput: Weight matrix for the input features.

– softmax: Outputs a probability distribution, used
for classification or regression.

– argmax: Finds the class or value corresponding to
the highest probability.

(3)Output Layer

Assume:

– The initial input features are X ∈ RN×d, where
N is the number of nodes, and d is the feature
dimension.

– The output classification has C classes.

The mathematical flow of the output layer is as follows:

– Output of GAT

XGAT = GAT(X)

where XGAT ∈ RN×C .

– Residual Connection Mapping

Xresidual = W ·X + b

where W ∈ RC×d, b ∈ RC .



– Feature Fusion

Z = XGAT +Xresidual

– Activation Function Application

Y = LogSoftmax(Z)

where Y ∈ RN×C represents the predicted prob-
ability distribution for each node.

• Regularization of the model

During the model training process, the regulariza-
tion mechanism is introduced to improve the general-
ization ability of the model and prevent overfitting. By
constraining the network weights and randomly sup-
pressing the activities of some neurons, regularization
can effectively reduce the model’s dependence on the
training data, thus improving the model’s performance
on the validation and test sets. In this paper, common
regularization methods such as Dropout and Weight
Decay are used.

3.2.2. Model Parameter Optimization Evaluation

The loss function can be expressed as:

L = LCE

The cross-entropy loss function is used to measure the dif-
ference between the model predictions and the true labels. It
is a common loss function in supervised learning. The cross-
entropy loss function LCE is defined as:

LCE = −
∑
i

yi log(ŷi)

The proposed Bitcoin anomaly detection model, through
feature enhancement, multi-channel aggregation, max pool-
ing, convolutional layers, and the use of skip mechanisms,
successfully addresses the challenge of detecting complex
anomalies in Bitcoin transaction networks. This design
not only improves detection accuracy but also demonstrates
stronger robustness in representing diverse data augmentation
and complex network structures.

4. EXPERIMENTS

In this paper, the dataset is split into training set, validation set
and test set divided into 80%, 10% and 10%. The graph neural
hybrid network models of GraphSAGE and GAT were trained
and the corresponding parameter metrics were selected for
analysis.

4.1. Indicator Selection

Accuracy, recall, precision, FI score and confusion matrix are
selected as evaluation metrics for the unbalanced classifica-
tion problem of Bitcoin data.

• Accuracy = Number of Correct Predictions
Total Number of Predictions

• Precision = True Positives (TP)
True Positives (TP)+False Positives (FP)

• Recall = True Positives (TP)
True Positives (TP)+False Negatives (FN)

• F1 = 2× Precision×Recall
Precision+Recall

• Confusion Matrix =

[
True Positives False Positives

False Negatives True Negatives

]
4.2. Experimental Results

Based on the above analysis, the data of accuracy, precision,
recall and F1-Score metrics are plotted with the number of
training images as shown in figure6.

Fig. 6. Experimental Results

Analyzing the image findings, it is found that the four core
metrics (Accuracy, Precision, Recall, and F1 Score) increase
rapidly in the early stage of training (within about 50 itera-
tions), and then gradually stabilize after about 100 iterations,
eventually approaching 1. Meanwhile, the confusion matrix
image(Figure7) is plotted.

Overall, the model performs extremely well in classify-
ing legal transactions, but its performance in classifying ille-
gal transactions is somewhat lacking, which may be related
to the small number of illegal transaction samples. This in-
dicates that the model has a high classification accuracy in
the overall task, but there is still room for improvement in its
ability to classify a few classes. The distribution of predicted
probabilities of legal (Licit) and illegal (Illicit) transactions
for the model out of graphical neural network (GCN) during
the training and testing phases(figure8) is also plotted. The
figure 8 shows that the model has a clear distribution of pre-
dicted probabilities for legal and illegal transactions and has



Fig. 7. Confusion Matrix

good classification ability. The probability distributions of le-
gal and illegal transactions are almost completely separated,
which reflects the high accuracy and robustness of the model
in classifying transactions. In addition, the distribution curves
of the training and test sets are similar, which further indicates
that the model’s performance on the test set is consistent with
the training set and has good generalization ability.

Fig. 8. Predicted Probabilities

4.3. Model Comparisons

In order to enhance the persuasive power of the experiment,
the method of this paper and the traditional single model (ad-
aboost) are compared, and a single GAT map neural network
model is also selected for comparison, and the final table is
obtained as follows.

The Proposed Method delivers the best results among

Table 1. Performance Comparison

Method Accuracy Precision Recall F1

Adaboost 0.9639 0.7230 0.6527 0.6861
GAT 0.9602 0.8342 0.4843 0.6128
Proposed 0.9791 0.9383 0.6475 0.7662

the three models, especially in precision and F1 score. Its
balanced performance makes it the most reliable choice for
tasks like detecting illegal transactions in Bitcoin networks,
where both minimizing false positives and capturing true pos-
itives are essential. Adaboost and GAT may still be useful
in specific scenarios but are less suitable for comprehensive
anomaly detection.

5. CONCLUSION AND FUTURE WORK

In this study, we have systematically analyzed and experi-
mented with graph neural network technology for the prob-
lem of detecting illegal transactions in the Bitcoin transaction
network, and achieved certain results. The exploratory anal-
ysis of the Elliptic dataset reveals the significant differences
between legal and illegal transactions in terms of node fea-
tures and network structure, which provides a solid founda-
tion for the construction of graph-based deep learning mod-
els. In terms of model design, the residual network architec-
ture combining GraphSAGE and GAT improves the feature
learning capability and model training stability through the
multi-head attention mechanism and jump connection. The
experimental results show that the model exhibits high clas-
sification accuracy, precision, recall and F1 score in the task
of illegal transaction classification, which fully validates the
potential of graph neural networks in complex network data
analysis.

Although this study has made some progress, there are
still some limitations, which provide room for further opti-
mization in subsequent studies. First, the problem of uneven
distribution of data samples is still significant, and the number
of illegal transaction samples is extremely sparse compared
to legal transactions, which leads to the limited performance
of the model in classifying a few classes of samples. This
not only reduces the reliability of the model in real-world ap-
plication scenarios, but also puts higher requirements on the
generalization ability of the model. In addition, existing mod-
eling methods are mainly based on static graph structures,
failing to fully explore the dynamic evolution characteristics
of the transaction network, while the Bitcoin transaction net-
work is essentially an ever-changing dynamic system, a char-
acteristic that may contain important patterns and laws with
far-reaching significance for the detection of illegal transac-
tions.

In summary, this study shows that graph neural networks
have great potential for application in blockchain illegal trans-



action detection, providing strong support for the security and
compliance of blockchain finance. With the growth of data
scale, the improvement of model structure and the maturity
of dynamic modeling technology, the illegal transaction de-
tection method based on graph neural network will further
exert its advantages and become an important tool to promote
the healthy development of blockchain ecology.
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